My IGARSS 2019 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Clicking on the Add button next to a paper title will add that paper to your custom schedule.
Clicking on the Remove button next to a paper will remove that paper from your custom schedule.

Session Detail

Session Title FR4.R7: Advances on Analysis of Big Data in Remote Sensing II
Presentation Mode Oral
Session Time Friday, 02 August, 15:40 - 17:20
Location Room 413
Session ChairsBegüm Demir, Technische Universität Berlin and Andrea Marinoni, University of Tromsø

  FR4.R7.1: ACCESS CONTROL ON BIG DATA AND SMALL PIXELS: HOW TO ACHIEVE PRIVACY AND SECURITY
         Peter Baumann; Jacobs University
         Dimitar Misev; Jacobs University

  FR4.R7.2: BIGEARTHNET: A LARGE-SCALE BENCHMARK ARCHIVE FOR REMOTE SENSING IMAGE UNDERSTANDING
         Gencer Sumbul; Technische Universität Berlin
         Marcela Charfuelan; DFKI
         Begüm Demir; Technische Universität Berlin
         Volker Markl; Technische Universität Berlin

  FR4.R7.3: SCALABLE WORKFLOWS FOR REMOTE SENSING DATA PROCESSING WITH THE DEEP-EST MODULAR SUPERCOMPUTING ARCHITECTURE
         Ernir Erlingsson; University of Iceland
         Gabriele Cavallaro; Forschungszentrum Jülich GmbH
         Helmut Neukirchen; University of Iceland
         Morris Riedel; Forschungszentrum Jülich GmbH

  FR4.R7.4: IMPROVED EARTH OBSERVATION DATA RETRIEVAL THROUGH HASHING ALGORITHMS
         Alexandru-Cosmin Grivei; University Politehnica of Bucharest
         Corina Văduva; University Politehnica of Bucharest
         Mihai Datcu; German Aerospace Center (DLR)

  FR4.R7.5: A FAST AND PRECISE METHOD FOR LARGE-SCALE LAND-USE MAPPING BASED ON DEEP LEARNING
         Xuan Yang; Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
         Zhengchao Chen; Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
         Baipeng Li; Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
         Dailiang Peng; Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
         Pan Chen; Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
         Bing Zhang; Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences